Fridge
Name
Fridge Objects Dataset
Description
Fridge Objects is a toy dataset which consists of 134 images with 4 classes of beverage container {can, carton, milk bottle, water bottle} pictures taken on different backgrounds.
Annotations Examples
Usage
Example showing how to use this dataset
How to load this dataset
# Imports
from icevision.all import *
import icedata
# Load the Fridge Objects dataset
path = icedata.fridge.load_data()
How to parse this dataset
# Get the class_map, a utility that maps from number IDs to classs names
class_map = icedata.fridge.class_map()
# Randomly split our data into train/valid
data_splitter = RandomSplitter([0.8, 0.2])
# Fridge parser: provided out-of-the-box
parser = icedata.fridge.parser(data_dir=path, class_map=class_map)
train_records, valid_records = parser.parse(data_splitter)
# shows images with corresponding labels and boxes
show_records(train_records[:6], ncols=3, class_map=class_map, show=True)
How to load the pretrained weights of this dataset
class_map = icedata.fridge.class_map()
model = icedata.fridge.trained_models.faster_rcnn_resnet50_fpn()
Dataset folders
Annotations sample
<annotation>
<folder>images</folder>
<filename>2.jpg</filename>
<path>../images/2.jpg</path>
<source>
<database>Unknown</database>
</source>
<size>
<width>499</width>
<height>666</height>
<depth>3</depth>
</size>
<segmented>0</segmented>
<object>
<name>milk_bottle</name>
<pose>Unspecified</pose>
<truncated>0</truncated>
<difficult>0</difficult>
<bndbox>
<xmin>247</xmin>
<ymin>192</ymin>
<xmax>355</xmax>
<ymax>493</ymax>
</bndbox>
</object>
</annotation>
License
Unknown
Relevant Publications
Unknown