Faster RCNN / Mask RCNN Backbones
Usage
We use the torchvision Faster RCNN model, and the torchvision Mask RCNN model.
Both models accept a variety of backbones. In following example, we use the default fasterrcnn_resnet50_fpn model. We can also choose one of the many backbones listed here below:
Faster RCNN Backbones Examples
fasterrcnn_resnet50_fpn Example: Source Code
- Using the default argument
model = faster_rcnn.model(num_classes=len(class_map))
Using the explicit backbone definition
backbone = backbones.resnet_fpn.resnet50(pretrained=True) # Default
model = faster_rcnn.model(
backbone=backbone, num_classes=len(class_map)
)
resnet18 Example:
backbone = backbones.resnet_fpn.resnet18(pretrained=True)
model = faster_rcnn.model(
backbone=backbone, num_classes=len(class_map)
)
Mask RCNN Backbones Examples
fasterrcnn_resnet50_fpn Example:
- Using the default argument
model = mask_rcnn.model(num_classes=len(class_map))
Using the explicit backbone definition
backbone = backbones.resnet_fpn.resnet50(pretrained=True) # Default
model = mask_rcnn.model(
backbone=backbone, num_classes=len(class_map)
)
resnet34 Example:
backbone = backbones.resnet_fpn.resnet34(pretrained=True)
model = faster_rcnn.model(
backbone=backbone, num_classes=len(class_map)
)
Supported Backbones
FPN backbones - resnet18
-
resnet34
-
resnet50
-
resnet101
-
resnet152
-
resnext50_32x4d
-
resnext101_32x8d
-
wide_resnet50_2
-
wide_resnet101_2
Resnet backbone - resnet18
-
resnet34
-
resnet50
-
resnet101
-
resnet152
-
resnext101_32x8d
MobileNet - mobilenet
VGG
-
vgg11
-
vgg13
-
vgg16
-
vgg19